Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

De-Qian Shi,^a Wei Wang,^a* Jing Wang^a and Hai-Jun Chi^b

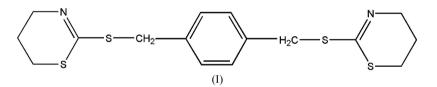
^aSchool of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China, and ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wjwyj82@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.041 wR factor = 0.126 Data-to-parameter ratio = 15.4

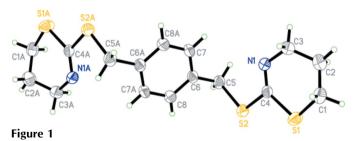
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{16}H_{20}N_2S_4$, was synthesized by the reaction of 1,4-dibromomethylbenzene and 1,3-thiazine-2-thione. The molecule is located on a crystallographic centre of inversion. The thiazine ring has an envelope conformation.


2,2'-(p-Phenylenedimethylenedithio)bis(4,5-dihydro-

Received 13 August 2006 Accepted 15 August 2006

Comment

1,3-thiazine)


As a type of ditopic ligand, dithioethers can be used as bridging ligands in the construction of coordination polymers with soft metal ions. *N*-Heterocylic units have been synthesized and investigated (Sharma *et al.*, 1999; Constable *et al.*, 2002; Bu *et al.*, 2003; Hong *et al.*, 2000). Thiazine derivatives possess acaricide properties. In order to study the properties of these compounds, we have synthesized several new thiazine derivatives, and we present here the crystal structure of 2,2'-(*p*phenylenedimethylenedithio)bis(4,5-dihydro-1,3-thiazine), (I).

Molecules of (I) have crystallographic inversion symmetry. The thiazine ring has an envelope conformation. Atom C2 deviates by 0.641 (3) Å from the plane of the remaining five ring atoms. Although the sum of the bond angles around C4 is 360° , two bond angles deviate significantly from the ideal value of 120° (Table 1).

Experimental

A solution of 1,4-dibromomethylbenzene (1.32 g, 5 mmol) in ethanol (5 ml) was added dropwise to a mixture of 1,3-thiazine-2-thione (1.46 g, 11 mmol), KOH (0.615 g, 11 mmol) and ethanol (5 ml). The

View of the molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms with the suffix A are generated by the symmetry operation (-x, 1 - y, -z).

All rights reserved

© 2006 International Union of Crystallography

reaction mixture was then stirred for 24 h at room temperature. The mixture was added dropwise to water (30 ml) and a white precipitate appeared. This precipitate was filtered off, washed with water and recrystallized from ethanol and water (yield 65%, m.p. 350–351 K). Analysis calculated for $C_{16}H_{20}N_2S_4$: C 52.17, H 5.43, N 7.61%; found: C 52.09, H 5.41, N 7.65%. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a dichloromethane solution.

Crystal data

$C_{16}H_{20}N_2S_4$
$M_r = 368.58$
Monoclinic, $P2_1/c$
a = 14.280(3) Å
$b = 5.1581 (13) \text{\AA}$
c = 12.250 (3) Å
$\beta = 103.782 \ (4)^{\circ}$
$V = 876.3 (4) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.837, T_{\rm max} = 1.000$ (expected range = 0.793–0.948)

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.126$ S = 1.061540 reflections 100 parameters H-atom parameters constrained Z = 2 $D_x = 1.397 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.54 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.20 \times 0.14 \times 0.10 \text{ mm}$

4193 measured reflections 1540 independent reflections 1168 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0586P)^2 \\ &+ 0.568P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} &< 0.001 \\ \Delta\rho_{\rm max} &= 0.40 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\rm min} &= -0.36 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Selected bond angles (°).

N1-C4-S1	130.4 (2)	S1-C4-S2	106.73 (15)
N1-C4-S2	122.9 (2)		

All H atoms were positioned geometrically and refined as riding (C-H = 0.93 or 0.97 Å for aromatic and methylene H atoms, respectively). $U_{\rm iso}({\rm H})$ values were set equal to $1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the 05 L003 project supported by the Education Department of Liao Ning Province in China.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Bu, X. H., Xie, Y. B., Li, J. R. & Zhang, R. H. (2003). *Inorg. Chem.* 42, 7422–7430.

Constable, E. C., Housecroft, C. E., Kariuki, B. M., Kelly, N. & Smith, C. B. (2002). Inorg. Chem. Commun. 5, 199–202.

Hong, M. C., Su, W. P., Cao, R., Fujita, M. & Lu, J. X. (2000). *Chem. Eur. J.* 6, 427–431.

Sharma, C. V. K., Broker, G. A., Huddleston, J. G., Baldwin, J. W., Metzger, R. M. & Rogers, R. D. (1999). J. Am. Chem. Soc. 121, 1137–1144.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.